OWON XDS Series Oscilloscope Tech Review

Front

“Base Noise: The Oscilloscope Parameter Often Ignored.”

When it comes to the main parameters of oscilloscopes, bandwidth, sample rate, and recording length all come to mind. However, there is a parameter that is often ignored: Base Noise.

What is the Base Noise? Why it is so important? The following will explain what it is and why it shouldn’t be overlooked.

Base Noise refers to the “Baseline Noise”, which indicates the vertical noise in the transformation of a simulated front end and a digital end.

As an example, OWON looked at The Base Noise of an oscilloscope. In particular, we looked at the noise a waveform generated while the OWON oscilloscope was turning into its most sensitive vertical position. The range scale of Base Noise was determined by counting the SNR (Signal to Noise Ratio). The higher the value, the lower the interference. Thus, the lower Base Noise the signal contained.

How Base Noise influences measurement results:

With the rapid development and advancement of electronics technology, some processing chips are limited in their ability to generate mVs in power. The power ripple might be required at ±5% or even lower. If the Base Noise is very high, the real measured signal would be drowned in the Base Noise of the device, and engineers would then get a false reading. Therefore, Base Noise is very important when measuring small signals.

Since the Base Noise is so important. Why don’t oscilloscope manufacturers mention this?

The main reason: cost control. Most of middle to low end oscilloscopes in the market are designed for larger bandwidth or higher sample rate. Their processor chips are mostly used for overclock running, which causes the other components to overload while running. This then contributes to a large Base Noise effect. Oscilloscope manufacturers are not willing to expose their shortcoming, so a user is unable to learn of a particular oscilloscope brand’s Base Noise until put to use for their application.

OWON conducted a comparison of the Base Noise level of popular oscilloscope on market:

OWON - T

T Company’s oscilloscope on 1mV/div and 500us position.

(440uV Peak-Peak Voltage)

OWON - R

R brand popular oscilloscope on 1mV/div and 500us position.

(920uV Peak-Peak Voltage)

OWON - C

A Chinese brand 3000 series oscilloscope on 1mV/div and 500us position.

(467uV Peak-Peak Voltage)

OWON - O

Lilliput OWON XDS Series Oscilloscope on 1mV/div and 500us position. (380uV Peak-Peak Voltage)

Based on the oscilloscope comparison, most of middle end oscilloscopes had more than 500uV noise. The brand that consistently had the lowest Base Noise was the OWON XDS Series Oscilloscope. Their VPP value held on an average of 350uV. The OWON XDS Series Oscilloscope controlled Base Noise better than T Company’s most popular mid-range oscilloscope.

The OWON XDS Series Oscilloscope is the latest product release from OWON. With 12‐bit resolution, the XDS series offers the best solution for those who need to measure small signals or be able to read details from a large signal. Highly suitable for Medical, Automotive, Power Supply, and more.

OWON XDS series oscilloscopes come with the OWON 3rd generation technology platform ‐ Xvisual, which advances the performance of the XDS series oscilloscopes over other oscilloscopes available. The new Xvisual platform consists of 3 parts: Low Base Noise, 40M Record Length, 75,000 wfms/s Refresh Rate. One of the main benefits of Xvisual is ease at which the measurement of small signals can be read, and the ability to fully restore the true status of signals.

If you need an economical oscilloscope to measure small signals, the OWON XDS Series Oscilloscopes are your best choice.

Established in 2004, NorthTree Associates (Cologne, MN) is a North American distributor that provides unique electronic test & measurement tools for design engineers, test engineers and production engineers. www.northtreeassociates.com

Advertisements

9 Factors to Consider When Choosing an Oscilloscope

SDS Front

If you’re involved in electronics, you’ll probably have an oscilloscope on your bench. As electronics become more complex almost daily, sooner or later a new oscilloscope will be in order. How to choose the right one for your applications?

Factors to consider:

Remember that the bandwidth specification of an oscilloscope is the frequency of the “-3 dB point” of a sine-wave signal of a particular amplitude, e.g. 1 Vpp. As the frequency of your sinewave goes up (while keeping the amplitude constant), the measured amplitude goes down. The frequency at which this amplitude is -3 dB lower, is the instrument’s bandwidth. This means that an oscilloscope of 100MHz would measure a 1Vpp sinewave of 100MHz at only (approx.) 0.7Vpp. That is an error of about 30%! In order to measure more correctly, use this rule of thumb: BW/3 equals about 5% error; BW/5 equals about 3% error. In other words: if the highest frequency you want to measure is 100 MHz, choose an oscilloscope of at least 300MHz, a better bet would be 500MHz. Unfortunately, this has the most influence on the price…

Understand that today’s signals are no longer pure sine waves, but most of the time square waves. These are built by “adding” the odd harmonics of the fundamental sine wave together. So a 10 MHz square wave is “built” by adding a 10MHz sine wave + a 30MHz sine wave + a 50MHz sine wave and so on. Rule of thumb: get a scope that has a bandwidth of at least the 9th harmonic. So if you’re going for square waves, it’s better to get a scope with a bandwidth of at least 10x the frequency of your square wave. For 100MHz square waves, get a 1GHz scope… and a bigger budget…

Consider rise (fall) time. Square waves have steep rise and fall times. There’s an easy rule of thumb to get to know what bandwidth your scope needs to be if these times are important to you. For oscilloscopes with bandwidths below 2.5GHz, calculate the steepest rise (fall) time it can measure as 0.35/BW. So an oscilloscope of 100MHz can measure rise times up to 3.5ns. For oscilloscopes above 2.5GHz up to about 8GHz, use 0.40/BW, and for scopes above 8GHz use 0.42/BW. Is your risetime the starting point? Use the inverse: if you need to measure rise times of 100ps, you’ll need a scope of at least 0.4/100ps = 4 GHz.

Choose your sample speed. Today’s oscilloscopes are almost all digital. The above steps involved the analog part of the instrument, before it gets to the A/D converters to get “digitized”. Here the bandwidth-to-rise time calculation can help you out: an oscilloscope of 500MHz has a calculated rise time of 700ps. To reconstruct this, you need at least 2 sample points on this edge, so at least a sample each 350ps, or 2.8Gsa/s (gigasamples per second). Scopes don’t come in this flavor, so choose a model with a faster sampling speed, e.g. 5Gsa/s (resulting in 200ps “time resolution”).

Decide on the number of channels. This is easy: most scopes come with 2ch or 4ch configurations, so you can choose what you need. Fortunately prices don’t double from 2ch to 4ch, but it does have a big impact on the price of the instrument. High-end scopes (>=1GHz) have always 4ch.

Calculate how much memory you’ll need. Depending on how much of your signal you want to see in a “single shot acquisition”, get your math right: at 5Gsa/s, you have a sample each 200ps. A scope with a memory of 10.000 sample points, can store 2µs of your signal. A scope with 100M samples (they do exist!) can store 20 seconds! Looking at repetitive signals or “eye-diagrams”, memory is less important.

Think about repetition rate. A digital oscilloscope uses a lot of time calculating. Between the moment of triggering (see next step), having the captured signal on the display, and capturing the next triggered event, most digital scopes “consume” several milliseconds. This results in only a few “photos” of your signal each second (waveforms per second), typically about 100-500. One vendor solved this problem with so called “Digital Phosphor” (from about 4.000 wfms/s to >400.000 wfms/s for the top models), others followed with similar-like technologies (but not always sustained/continuous, rather in bursts). This repetition rate is important because those rare errors and faults in your signal might occur just then when the scope is not acquiring, but busy calculating the last taken acquisition. The higher the repetition rate (wfms/s rate), the higher your chances are of capturing that rare event.

Check what kind of errors you expect to be looking for. All digital scopes have some sort of intelligent triggers on board, meaning you can trigger on more than just the rising or falling edge of your signal. If your repetition rate is high enough, you’ve probably seen that rare glitch every other second. Then it’s nice to have a Glitch trigger.

Think about resolution of LCD display. Small screens with poor resolution can make your life miserable if you cannot see results easily. Buy the largest screen with the best definition your budget will allow.

Some Final Tips

  • Triggering, repetition rate and memory: once you found the rare event with a high wfms/s rate, having the right trigger available is more important than repetition rate, as your scope will trigger only on the (rare) event, which occurs… right: rarely. So you don’t need high rep-rate anymore. Memory can become more important, as to be able to analyze what happened before or after the event.
  • Remember: garbage in is garbage out, so get the bandwidth and rise time issue sorted out first!

Established in 2004, NorthTree Associates (Cologne, MN) is a North American distributor that specializes in providing unique Electronic Test & Measurement tools for design engineers, test engineers and production engineers. You can visit our website at http://www.northtreeassociates.com

10 Reasons Why You Need A PC Oscilloscope

vds3104 right

PC Oscilloscopes (PCOs) are rapidly replacing traditional digital storage oscilloscopes (DSOs) as the essential item for your test equipment arsenal. Here are 10 reasons why:

  1. Compact and portable units
  2. Uses your PC monitor to provide a large and detailed color display
  3. Signal storage is limited only by your PC’s storage capability
  4. Captured waveforms and instrument settings can easily be shared with others
  5. New functionality through free software updates
  6. Can be used with desktop or laptop PCs
  7. High-speed USB 3.0 connection (parallel port oscilloscopes are also available)
  8. Hardware and software in one package
  9. Use your PC Oscilloscope for data acquisition
  10. A complete test and measurement lab in one unit

1.  Compact and portable units

By integrating several instruments into one small unit, PC Oscilloscopes (PCOs) are lighter and more portable than traditional test equipment. When used with a laptop computer, you can carry a complete electronics lab in the same bag as your PC.

2.  Uses your PC monitor to provide a large and detailed color display

The display of a traditional oscilloscope is limited by the physical size of the oscilloscope, and may only be a single color. With a PC Oscilloscope your computer controls the display, so not only do you get a full color display, but the display can be the size of your monitor, projector or plasma display.

3.  Signal storage is limited only by your PC’s storage capability

PC Oscilloscopes store the signals that you are measuring directly on your PC. With the power of today’s modern PCs this gives you vast storage capabilities. Along with allowing you to record lengthy signals this also lets you save signals for reviewing at a later date.

4.  Captured waveforms and instrument settings can easily be shared with others

Need to show your customer or colleague the signal you have captured? Just save the waveform and email them a copy. They don’t have a copy of the oscilloscope software? No problem – just export it as text, an image or in a binary format for use with third-party software. (If they want to set up their equipment to run the same test, simply send them the oscilloscope settings too.)

5.  New functionality through free software updates

If you’re lucky you can return a traditional DSO to the supplier for a firmware upgrade and maybe get improved functionality. With a PC-based oscilloscope new features and improved functionality can be added at any time with a simple software update. Free software updates means that a PC Oscilloscope is one of the few things that can actually become more powerful and useful with age.

6.  Can be used with desktop or laptop PCs

PC Oscilloscopes are external devices that are connected to your PC using the ubiquitous Universal Serial Bus (USB). Virtually every laptop or desktop PC sold comes with multiple USB ports so there’s no problem using your PC Oscilloscope with either a desktop or a laptop PC.

7.  High-speed USB 3.0 connection

USB 3.0 can transfer data at speeds of up to 1 GS/s. Using powerful PC Oscilloscope software it give you incredible performance with fast screen updates and the ability to stream data.

8.  Hardware and software in one package

Choose PC Oscilloscopes that come complete with the hardware and software in one package.

9.  Use your PC Oscilloscope for data acquisition

Using the sw, you can transform your PC Oscilloscope into a data logger that can log data over extended periods of time.

10.  A complete test and measurement lab in one unit

When you buy a PC-based oscilloscope make sure you don’t just get an oscilloscope: make sure you also get a spectrum analyzer, meter and data logger rolled into your PC-Oscilloscope choice. Some models even include a built–in signal generator or arbitrary waveform generator. So with a PC Oscilloscope you really do get a complete test and measurement lab in one cost–effective unit.

NorthTree Associates is a distributor and supplier of Electronic Test & Measurement Equipment. Companies represented include ITIC USB 2.0 Protocol Analyzers, LabNation SmartScopes, Micsig Oscilloscopes, Oscium iOS Test Tools, OWON Oscilloscopes.

5 Features To Consider When Choosing A Digital Oscilloscope

vds3104 right

For anyone designing, manufacturing, or repairing electronic equipment, a digital storage oscilloscope is a must-have tool. It lets you see high-speed repetitive or single-shot signals across multiple channels to capture elusive glitches or transient events. An oscilloscope is equally as useful a tool for qualifying elements of a new design as it is for isolating problem components in an existing system under repair.
When it comes to evaluating oscilloscopes, many engineers focus on one specification: bandwidth. The assumption is generally that the faster oscilloscope is the better oscilloscope. And while bandwidth is an important thing to consider, it falls well short of telling the whole story or in ensuring that the oscilloscope you’re considering will truly meet your needs. With that in mind, here are five other things you’ll want to consider when choosing your next oscilloscope.

1. Rise time — Accurate rise-time measurements are key to making accurate measurements in the time domain. Many logic families have faster rise times (edge speeds) than their clock rates suggest. A processor with a 20 MHz clock may well have signals with rise times similar to those of an 800 MHz processor. Rise times are important for studying square waves and pulses. Square waves are standard for testing amplifier distortion and timing signals for TVs and computers. Pulses may represent glitches or information bits — too slow a rise time for the circuit being tested could shift the pulse in time and give a wrong value.

2. Fast sample rate — The sample rate of an oscilloscope is similar to the frame rate of a movie camera. It determines how much waveform detail the scope can capture. To capture glitches you need speed. A signal must be sampled at least twice as fast as its highest frequency component to accurately reconstruct it and avoid aliasing (showing artifacts that are not actually there). This is however an absolute minimum. What’s more, it applies only to sine waves and assumes a continuous signal. Glitches are by definition not continuous, and sampling at only twice the rate of the highest frequency component is usually not enough. A high sample rate increases resolution, ensuring that you’ll see intermittent events. As a rule of thumb, look for a sample rate of at least 5x your circuit’s highest frequency component.

3. Versatile triggering — All oscilloscopes provide edge triggering, and most offer pulse width triggering. But more advanced triggering capabilities can save you time and shorten the time to answer when working with more challenging signals. The wider the range of trigger options available, the more versatile the scope. Some of the triggers available include A & B sequence triggering; video triggering on line/frame/HD signals, etc.; logic triggers such as slew rate, glitch, pulse width, time-out, runt, setup-and-hold; and communications triggers for serial and parallel buses.

4. Powerful waveform navigation and analysis — Searching for specific waveform errors can be like searching for a needle in a haystack. Tools that automate the process can be a big time saver. For instance, oscilloscopes with record lengths in the millions of points can show thousands of screens worth of signal activity, essential for examining complex waveforms. Capabilities such as search and mark speed up the process by letting you search through the entire acquisition and automatically mark every occurrence of an event you specified. Other capabilities include zoom and pan, play and pause, and advanced search.

5. Matching probes — Precision measurements start at the probe tip. The probe’s bandwidth must match that of the oscilloscope, and must not overload the Device Under Test (DUT). Probes actually become a part of the circuit, introducing resistive, capacitive and inductive loading that alters the measurement. It’s important to have a range of probes available. To start with, select passive probes that have high bandwidth and low loading. Active ground-referenced probes offer one to four GHz bandwidth while active differential probes support 20 GHz or more. Adding a current probe enables the scope to calculate instantaneous power, true power, apparent power and phase. High voltage probes measure to 40kV peak. Specialty probes include logic, optical and environmental types.

Cost of ownership
Any scope you choose will need to fit within the constraints of a capital acquisition budget. While cost of ownership isn’t a feature per-se, it’s an important consideration.  This means you should compare support options to see to whether they add value to your purchase or can help extend the scope’s useful life. On-site education and training, as well as design, system integration, project management, and other professional services can help maximize productivity and ensure reliable measurements. Support packages such as these, along with options like extended warranty can save money in the long term.

Contact us with your questions or if you would like to visit our online store to shop for digital oscilloscopes – visit http://www.northtreeassociates.com / sales@northtreeassociates.com

NorthTree Associates Introduces OWON XDS Series Multi-Function Oscilloscopes

Front

The XDS series of oscilloscopes is the latest product release from OWON. With 12‐bit resolution, the XDS series offers the best solution for those who need to measure small signals or be able to read details from a large signal. Highly suitable for Medical, Automotive, Power Supply, and more.

In addition to having a 12‐bit resolution, the OWON XDS series of oscilloscopes are equipped with advanced technology and functions such as advanced trigger and decoding functions, Wi‐Fi and App support along with a capacitance touch screen.

OWON XDS series oscilloscopes come with the OWON 3rd generation technology platform ‐ Xvisual, which advances the performance of the XDS series oscilloscopes over other oscilloscopes available. The new Xvisual platform consists of 3 parts: Low Base Noise, 40M Record Length, 75,000 wfms/s Refresh Rate. One of the main benefits of Xvisual is ease at which the measurement of small signals can be read, and the ability to fully restore the true status of signals.

The XDS series oscilloscope software, provides advanced trigger and protocol decoding functions to help engineers analyze bus protocols and quick positioning. The embedded Wi‐Fi module ensures computers and cell phones can share the display screen to view and control the oscilloscope. Users can also check and save waveform data via App. By saving data via the App, data can be shared between other users.

The optional capacitance touch screen has been designed to look and act similar to a Smartphone – thus being intuitive and easy to start using right out of the box.

Additionally, the OWON XDS is complete mobile test station. It has incorporated the ultra‐thin design of the OWON SDS series oscilloscope, and has a battery option for portable use in the field. Besides the oscilloscope function, the OWON XDS also has function modules such as: a 25 MHz/50MHz single/dual channel(s) arbitrary waveform generator, a digital multimeter and a high precision data logger.

Established in 2004, NorthTree Associates (Cologne, MN) is a North American distributor for OWON oscilloscopes, waveform generators, and programmable power supplies. NorthTree Associates provides unique Electronic Test & Measurement tools for design engineers, test engineers and production engineers.

NorthTree Associates Announces Representation Agreement for OWON Electronic Test & Measurement Equipment

SDS Front

NorthTree Associates introduces the OWON range of high performance Electronic Test & Measurement Equipment which includes touch screen oscilloscopes, waveform generators, and programmable DC power supplies.

As a touch screen oscilloscope innovator, OWON has achieved various worldwide patent rights, software copyright for their TDS Series Touch Screen Oscilloscopes. Features include: a multi-touch screen, 100MHz to 200MHz bandwidth, 2 or 4 channels, real time sampling rates of 1GS/s to 2GS/s, compact design, high memory depths, and excellent function features.

Other OWON series of oscilloscopes offer bandwidths ranging from 20MHz to 300MS/s, up to 4 channels, channels and a 3.2GS/s sampling rate, making them ideal for both laboratory testing and field service applications across a wide range of industry sectors. High performance features offered by OWON oscilloscopes include isolated inputs for safely carrying out floating measurements, 10M record length for each channel, and a large 8 inch color LCD display screens with 600 x 800 pixel resolution.

In addition to oscilloscopes, NorthTree Associates will also be representing OWON waveform generators, and programmable DC power supplies. The OWON Waveform Generators are versatile waveform generators which derive both function and arbitrary waveforms using Direct Digital Synthesis (DDS) technology, providing stabile, precise, low-distortion signals from DC up to 150MHz, (depending upon model);  all with 14-bit vertical resolution. The features of the OWON Programmable DC Power Supplies include up to 100 output groups with configurable timer, high-resolution LCD display, extremely clean ripple and noise, comprehensive over-voltage over-current over-temperature protection, user friendly interface and panel layout, and variety standard interfaces to meet diverse test requirements.

Established in 1990, OWON is based in China, specializing in the manufacture of oscilloscopes, waveform generators, and programmable DC power supplies. These capable instruments are distributed to customers in the aerospace, automotive, communication, defense, electrical, and education industries in more than 80 countries across the globe.

Established in 2004, NorthTree Associates (Cologne, MN) is a North American distributor that provides unique electronic test & measurement tools for design engineers, test engineers and production engineers. www.shop.northtreeassociates.com

The Basics Of Oscilloscopes – What Is An Oscilloscope – Part 2

Instek GDS-2000

What other factors should be considered when purchasing a digital storage oscilloscope?

Beyond the basic four specifications, it is common to consider:

  • Number of channels (typically two or four). If you need to record multiple high-speed signals beyond four, you might want to look at a dedicated recorder.
  • Size of the display is often a consideration. Larger, clearer screens make it easier to see multiple signals at once. Luckily today’s digital storage oscilloscope also has different color lines for each signal.
  • How you capture a signal is also important. This is where triggers come into play. It is often important to see only signals with specific characteristics among the many captured. With most digital storage oscilloscopes, a variety of different trigger types are available to find particular events that happen during signal analysis.
  • If you are looking at packets of serial data, you may also find it useful to decode the signal to make sure that the correct instructions are being sent. Protocols such as I2C, SPI, CAN, LIN, RS232 are commonly used to communicate between devices. It is important to make sure that the right commands are communicated when a specific event happens.

When graphing a signal, what do you want to find out?

  • The time and voltage value of a signal
  • The frequency of an oscillating signal
  • How much of a signal is direct current (DC) or alternating current (AC)
  • How much of the signal is noise and if the noise is changing over time
  • To see the “moving parts” of a circuit represented by the signal
  • To tell if a malfunctioning component is distracting the signal

Oscilloscopes come in many different versions

  • Digital
  • Analog
  • Mixed signal
  • Portable
  • PC based versions

If the recording of a waveform is required, a digital scope will be applicable. If you need to see the waveform in real time, or to see the original intensity an analog scope would better suit that requirement.  The higher the input signal frequency is, the higher the bandwidth that will be required. If you do not have the appropriate amount of bandwidth, you risk the possibility of not getting accurate results.

If there is doubt about the amount of bandwidth that is required, then you should go the next step up. The bandwidth can usually be calculated by this formula: BANDWIDTH = (0.35 / rise time of the signal)

The higher the sampling rate, the more accurate and precise the captured waveform is. As the sampling rate increases, it allows for more samples a captured waveform has, for any given period of time.

In almost every electric application, including lab use, research and development, and product development there is a need for an oscilloscope to provide waveform analysis.

Mixed Signal Oscilloscopes (MSO)

Mixed Signal Oscilloscopes (MSO) can capture both analog and digital signals at once. A mixed signal scope usually combines 2 or 4 analog channels with either 8 or 16 digital ones. This is useful when looking at logic signals after a specific input has occurred when developing a system that combines physical input and computer controls.

There are both digital and analog channels that provide the ability to accurately time-correlate both signals. The measurements are compiled by using a single time base on a single display. Any combination of these measurements can be used to trigger the scope.

The key advantage of the MSO is that only one unit is required for conducting tests that you would normally need two units for.

An oscilloscope is a test and measurement instrument used primarily to measure voltage over time. The input signal is converted from an analog wave to a series of digital signals. Once it is digitized, oscilloscope can then store the information in memory and display it on the screen. The faster the signal is processed, the better the display will be.

Refer to the above general and digital oscilloscopes discussions that cover the common features of an MSO with a DSO.

Applications for Mixed Signal Oscilloscopes

  • Aerospace
  • Defense
  • Industrial Electronics
  • Communications
  • Research and Development

The MSO treats the oscilloscope and logic channels in different ways

  • Logic Channels: These channels are converted to digital format, where no analog information is shown
  • Oscilloscope Channels: These channels use an analog to digital converter to allow the analog input to show in digital format

MSO scope vs. Logic Analyzer factors to consider

  • State Analysis

o             MSO- Yes. Separate channels for clocks

o             Logic Analyzer- No. No provision for clock input

  • Triggering

o             MSO- Single events on both the analog and digital channels

o             Logic Analyzer- Advanced sequential capabilities

  • Channel Count

o             MSO- 16 / 32

o             Logic Analyzer- 64 – 204 +

  • Timing Analysis

o             MSO- Yes

o             Logic Analyzer- Yes

What other factors should be considered when purchasing a mixed signal oscilloscope?

Beyond the basic four specifications, it is common to consider:

  • Number of analog channels (typically two or four). If you need to record multiple high-speed signals beyond four, you might want to look at a dedicated recorder.
  • Number of digital channels, usually 8 or 16
  • Size of the display is often a consideration. Larger, clearer screens make it easier to see multiple signals at once. Luckily today’s digital storage oscilloscope also has different color lines for each signal.
  • How you capture a signal is also important. This is where triggers come into play. It is often important to see only signals with specific characteristics among the many captured. With most digital storage oscilloscopes, a variety of different trigger types are available to find particular events that happen during signal analysis.
  • If you are looking at packets of serial data, you may also find it useful to decode the signal to make sure that the correct instructions are being sent. Protocols such as I2C, SPI, CAN, LIN, and RS232 are commonly used to communicate between devices. It is important to make sure that the right commands are communicated when a specific event happens.

PC Based Oscilloscopes

PC based oscilloscopes are the modern alternative to the traditional bench top oscilloscope. All data and configurations measured on these oscilloscopes can be saved into a PC for further data analysis.

One of the key factors involved is the USB connection. The USB (universal serial bus) is intended for communications between interfaces, such as the oscilloscope and the PC in this instance.

PC based oscilloscopes come in either internal or external versions.

The external version(s) is a small unit that connects to a PC, usually by a USB. They can be used by a laptop or a desktop computer.

The internal version(s) usually come with a plug in card that is PCI format. This does not allow for portability and being that the card is placed in the actual PC, there is a lot of noise which could interfere with the results that are being measured.

Advantages of PC Based Oscilloscopes:

  • Easy to Use
  • Portable
  • Cost Effective
  • Large Display
  • Uses already “off-the-shelf” equipment- USB and PC

Portable Oscilloscopes

Portable Oscilloscopes are otherwise known as handheld oscilloscopes. They are typically used for on- site contractor maintenance and either in the industrial or electronic field.

If you need to move your oscilloscope around to many locations or from bench to bench in your lab, then the portable oscilloscope would be ideal for you.

Advantages of a Portable Oscilloscope

  • Lightweight
  • Easy to Use
  • Turn On and Off Quickly

To read Part 1 – click here:  http://wp.me/p42MUZ-6Z

Use the contact form below to contact NorthTree Associates with any questions you may have on this article or about oscilloscopes in general.